Inequalities for Estimations of Integrals Related to Higher-Order Strongly n -Polynomial Preinvex Functions
نویسندگان
چکیده
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn Strongly Generalized Preinvex Functions
In this paper, we define and introduce some new concepts of strongly φ-preinvex (φ-invex) functions and strongly φη-monotone operators. We establish some new relationships among various concepts of φ-preinvex (φ-invex) functions. As special cases, one can obtain various new and known results from our results. Results obtained in this paper can be viewed as refinement and improvement of previous...
متن کاملOstrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملHermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities
This doubly inequality is known in the literature as Hermite-Hadamard integral inequality for convex mapping.We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. For several recent results concerning the inequality (1) we refer the interested reader to [3,5,6,8,9,11,18,21,22] and the references cited there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2020
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2020/8841356